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A method estimates a 3D pose of a 3D specular object in an 
environment. In a preprocessing step, a set of pairs of 2D 
reference images are generated using a 3D model of the 
object, and a set of poses of the object, Wherein each pair of 
reference images is associated With one of the poses. Then, a 
pair of 2D input images are acquired of the object. A rough 3D 
pose of the object is estimated by comparing features in the 
pair of 2D input images and the features in each pair of 2D 
reference images using a rough cost function. The rough 
estimate is optionally re?ned using a ?ne cost function. 
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METHOD AND SYSTEM FOR ESTIMATING 
3D POSE OF SPECULAR OBJECTS 

RELATED APPLICATIONS 

[0001] This Non-Provisional patent application claims pri 
ority to Non-Provisional patent application Ser. No. 12/412, 
452, “Method for Estimating 3D Pose of Specular Objects,” 
?led by Ju Yong Chang on Mar. 27, 2009, and Provisional 
Patent Application 61/165,406, “Method and for Estimating 
3D Pose of Specular Objects,” ?led by Amit AgraWal on Mar. 
31, 2009, both incorporated herein by reference. 

FIELD OF THE INVENTION 

[0002] This invention relates generally to estimating 3D 
poses of objects, and more particularly to estimating the 3D 
pose of specular objects. 

BACKGROUND OF THE INVENTION 

[0003] Pose Estimation 
[0004] Three-dimensional (3D) pose estimation deter 
mines the location and angular orientation of an object. Typi 
cal, pose estimation methods rely on several cues, such as 2D 
texture images, and 3D range images. Texture images based 
methods assume that the texture is invariant to variations of 
the environment. HoWever, this assumption is not true if there 
are illumination changes or shadoWs. In general, most of 
these methods cannot handle objects that are specular. 
[0005] Range images based methods can overcome some 
of these di?iculties, because they exploit 3D information that 
is independent of the appearance of objects. HoWever, range 
acquisition equipment is more expensive than simple cam 
eras. 

[0006] Specular Objects 
[0007] For some objects, it is very di?icult to reconstruct 
the 3D shape. For example, recovering 3D shape of highly 
specular objects, such as mirror-like or shiny metallic objects 
is knoWn to be di?icult and unreliable. 
[0008] Re?ection cues are more sensitive to pose changes 
than texture or range cues. Therefore, exploiting the re?ection 
cues enables pose parameters to be estimated very accurately. 
HoWever, it is not clear Whether the re?ection cues are appli 
cable to global pose estimation, i.e., object detection, object 
segmentation, and rough object pose estimation, rather than 
just pose re?nement. 
[0009] Prior art methods are generally based on appear 
ance, Which is affected by illumination, shadoWs, and scale. 
Therefore it is di?icult for those methods to overcome related 
problems such as partial occlusions, cluttered scenes, and 
large pose variations. To handle these dif?culties, those meth 
ods use illumination invariant features, such as points, lines, 
and silhouettes, or illumination insensitive cost functions 
such as a normalized cross correlation (NCC). HoWever, the 
object needs to be suf?ciently textured in order for these 
methods to be successful. Severe illumination changes 
remain a problem, especially for specular objects. 
[0010] A Wide range of methods derive sparse local shape 
information from the identi?cation and tracking of distorted 
re?ections of light sources, and special knoWn features. 
Dense measurements can also be obtained using a general 
framework of light-path triangulation. HoWever, those meth 
ods usually need to perform accurate calibration and control 
the environment surrounding the object, and sometimes 
require many input images. 

Nov. 25, 2010 

[0011] Some methods for specular object reconstruction do 
not require environment calibration. Those methods assume 
small environmental motion, Which induces specular ?oW on 
the image plane. In those methods, the specular ?oW is 
exploited to simplify the inference of specular shapes in 
unknown complex lighting. HoWever, a pair of linear partial 
differential equations have to be solved, and generally, that 
requires an initial condition, Which is not easily estimated in 
real World applications. 
[0012] One method for estimating the pose based on specu 
lar re?ection uses a short image sequence and initial pose 
estimates computed by the standard template matching pro 
cedure. Lambertian and specular components are separated 
for each frame and environment maps are derived from the 
estimated specular images. Then, the environment maps and 
the image textures are concurrently aligned to increase the 
accuracy of the pose estimation process. 

SUMMARY OF THE INVENTION 

[0013] The embodiments of the invention provide a method 
and system, performed in a processor, for estimating a 3D 
pose of a 3D specular object in an environment. The basis for 
the estimation is matching features in 2D images of the specu 
lar object, acquired by a 2D camera. The images can be 
acquired by a conventional camera or by a high dynamic 
range (HDR) camera, Which alloWs a large range of scene 
luminance to be accurately acquired by in the image. 
[0014] In a preprocessing step, features are generated from 
a 3D model of the object and a set of possible poses of the 
object. For each pose of the 3D model, the features could be 
(a) a single HDR image (b) a pair of reference images repre 
senting tWo different exposure settings (c) a HDR image and 
a thresholded binary image, a camera With a non-linear inten 
sity response, or (d) specular ?oW image. 
[0015] It should be noted that the pair of images can be 
derived from a single HDR image. For better accuracy, 
images can be acquired for a large number of different expo 
sures. 

[0016] Then, a pair of input images is acquired of the 
object. This pair can be obtained either by acquiring tWo 
images, one at a short and the other at a long exposure, or from 
a single HDR camera image through simulating the short and 
long exposures. Input features are computed from the input 
images. An initial 3D pose of the object is estimated by 
comparing the features in the pair of input images With fea 
tures in the pairs of reference images using a ?rst cost func 
tion. 

[0017] Optionally, the 3D pose of the can be re?ned using a 
second cost function. It should be noted that if a database 
stores a large number of reference images for most possible 
poses, then the initial pose estimation Will be ?ne and accu 
rate. For example, if the database includes about a thousand 
poses the estimate Would be rough, and if the database stores 
a million poses the estimate is ?ner. 

[0018] In one embodiment, the feature is specular intensity 
in the images. If three (RGB) channels are used, then the 
specular intensity features have color, Which can make the 
features more distinct. To construct a 2D environment map, a 
small mirror-like sphere is arranged in the environment, and 
the pair of images is acquired, for example, one at a short and 
the other at a long exposure, or for example, both obtained 
from a single HDR camera image through simulating the 
short and long exposures. The sphere can be placed in the 
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scene With or Without the object. Other features based on 
specular re?ection are Within the scope of this invention. 
[0019] Each mirror-sphere image is used to construct a 2D 
environment map. The map is used to generate the pairs of 
reference images, Which are subsequently compared With the 
pair of input images to estimate the 3D pose of the specular 
object. It should be noted that the environment map can be 
constructed during the preprocessing, or While the input 
images are acquired to adapt for changing illumination. 
[0020] In another embodiment, the feature is specular ?oW 
in the images, Which is a special case of optical ?oW. Specular 
?oWs are generated for a set of 3D poses by inducing motion 
either in the environment or in the camera. Input specular ?oW 
is also computed from the input images. The reference specu 
lar ?oW images are subsequently compared With input specu 
lar ?oW images to estimate the 3D pose of the specular object. 
As before, a ?ne pose is estimated from a rough pose using 
rough and ?ne cost functions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0021] FIG. 1 is a ?oW diagram of a method for estimating 
a 3D pose of a specular object using specular intensity infor 
mation according to embodiments of the invention; 
[0022] FIG. 2 is a ?oW diagram of a method for estimating 
a 3D pose of a specular object using specular ?oW informa 
tion according to embodiments of the invention; 
[0023] FIG. 3 is a schematic of stencil selection using inci 
dent rays according to embodiments of the invention; and 
[0024] FIG. 4 is an example of reference image having 
reliable and unreliable pixels. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

[0025] System and Method OvervieW 
[0026] FIG. 1 is a ?oW diagram of a method, performed in 
a processor 100 for estimating a 3D pose of an object 101 in 
an environment 102, Wherein the object has a specular sur 
face. In this embodiment, features are specular intensity. If 
three (RGB) channels are used, then the combined specular 
intensities have a color. TWo-dimensional (2D) images of the 
environment are acquired by a camera 103. In one embodi 
ment, the camera has a high dynamic range (HDR). Alterna 
tively, the camera can use polarization to estimate specular 
components. 
[0027] The 3D pose is de?ned by a 3D translation vector 
(X, Y, Z) in a coordinate system of the camera, and 3D Euler 
angles ([1, q), o) for the orientation. 
[0028] In one application, the 3D pose is used to pick the 
object out ofa bin 106 using a robot arm 105. For example, in 
a manufacturing application a bin contains multiple identical 
objects, Which are picked and manipulated one at a time 
according to their estimated poses. In this embodiment, it 
Wouldbe advantageous to mount the camera on the robot arm. 

[0029] The object is textureless and highly specular such as 
a shiny metallic object, With a mirror-like surface. Thus, the 
only data available to the method are specular re?ections on 
the object in the 2D images. The distance betWeen the object 
and the camera is ZzZO. This distance can be used to deter 
mine a scale of projection. Furthermore, this distance can also 
be estimated using laser projection, stereo cameras or any 
other prior methods. 
[0030] The method uses loW level features in 2D images to 
estimate the 3D pose as folloWs. The method generates the 
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reference image 125 from the 3D model 121 using a bidirec 
tional re?ectance distribution function (BRDF) of the 
expected surface re?ectance for a large number of possible 
pose variations 122. The steps 110 and 120 can be one time 
preprocessing steps. If the BRDF of the object is knoWn, that 
BRDF can be used to generate the images. 
[0031] The 2D input images 131 are acquired by the camera 
system and then compared With the reference images to deter 
mine the best matching 3D pose 151 of the specular object. 
The model can be a CAD/CAM, polygon, or any other suit 
able model. 
[0032] Specular Intensity Features 
[0033] In one embodiment, a small mirror-like sphere is 
arranged in the environment 102 With or Without the object. 
The 2D image acquired of this mirror-like sphere can then be 
used to generate environment maps 111, Which represents 
illumination information. 
[0034] In another embodiment a set of camera images of 
the environment are registered in order to produce a mosaic 
(or a panoramic vieW) of the environment. This mosaic or 
panorama of the environment can be used to produce envi 
ronment maps 111, Which represents environment illumina 
tion information. 
[0035] This illumination information can be used to gener 
ate 120 the reference specular images 125, Which are used for 
the comparison With the input images. 
[0036] The environment illumination can have multiple 
light sources, e.g., ceiling lights, WindoWs, or lights on the 
bin. In addition, the lights can have different colors, e. g., red, 
green and blue, in Which case the cost functions are computed 
independently for each light color. Then, the pose is obtained 
to minimiZe the summed R, G, and B cost functions. 
[0037] The environment illumination can also be actively 
enhanced and manipulated using light sources, for example 
by projecting patterns on ceilings from single or multiple 
projectors. 
[0038] Specular FloW Features 
[0039] In another embodiment, the method uses specular 
?oW as features. The specular ?oW is de?ned as the optical 
?oW induced by motion of the object, camera, or environ 
ment. The specular ?oW does not depend on changing the 
lighting conditions but on the motion, the shape, and pose of 
the object. Therefore, specular ?oWs can be used as illumi 
nation invariant features for the pose estimation. 
[0040] Environment Map Based Approach 
[0041] As shoWn in FIG. 1, before estimating the 3D pose 
of the object, a pair of environment maps EL and ES 111 are 
acquired 110 of the environment 102 by processing images of 
a spherical mirror-like object. The maps have long and short 
exposures, respectively, e.g., about 1A second and 1/60 second. 
The input images IL and IS 131 are acquired 130 at the same 
long and short exposures. Alternatively, the EL and Es 
images, and IL and IS images, could be obtained from a single 
image acquired using for a HDR camera 103 folloWed by 
processing simulation long and short exposure. 
[0042] Initial Pose Estimation 
[0043] Generating Reference Specular Images: 
[0044] From the 3D model 121 of the object and the pair of 
environment maps EL and ES 111, the reference images 125 
are generated for a large number of prede?ned poses 122 that 
correspond to possible poses of the object. 
[0045] To this end, the Euler angles are uniformly and 
densely sampled to de?ne a large number of poses, e. g., 
25,000. The reference images are RL and RS for various Euler 
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angles ([1, q), o) at a location (0, 0, Z0). By ignoring inter 
re?ection and self-shadoWing, perfect specular re?ection 
images can be generated from EL and ES by applying the 
re?ection mapping, Which is a special case of texture map 
ping. 
[0046] The reference images could also be generated by 
non-uniform sampling of poses, Which could also depend on 
the pose distribution of the given object. 
[0047] The reference specular images 125 depend on the 
3D location, as Well as the orientation of the object With 
respect to the camera. However, the camera has a small ?eld 
of vieW 104, and the depth of the object is knoWn. Therefore 
the differences betWeen the reference specular images gener 
ated from different 3D locations can be ignored. This is suf 
?cient for initial pose estimation 140. It should be noted, that 
the input images can also be obtained from multiple vieWs for 
better accuracy. 

[0048] The input images 131 are compared With the refer 
ence specular images 125 to estimate 140 the 3D pose 141 by 
solving 

Where (X, Y, 0, (j), (AI) denotes the initial pose 141, CR( ) is a 
rough cost function 139 for the comparing, and arg min is a 
function that returns arguments that produce a minimum 
value, and the inner minimum is determined before the outer 
minimum. It is understood that if the prede?ned reference 
poses are sampled more ?nely, e.g. 1,000,000 poses, then the 
initial pose estimate need not be considered rough, and need 
not be re?ned. 

[0049] The cost function 139 is 

Where 7» is a control parameter, and C l( ) and C2( ) are the cost 
functions for the long and short exposure images, respec 
tively. To obtain these terms, the 3D translation vector Qi, Y, 
Z0) is projected onto the 2D image plane, and the reference 
image is moved to a projected point (x, y). Then, each pair of 
translated reference images is compared With the correspond 
ing pair of input images. 
[0050] As used herein, the cost functions measure the 
degree to Which input and reference image features (specular 
intensities or specular ?oWs) are Well matched for each ref 
erence pose. 

[0051] Highlight Pixels Based Cost Function: 
[0052] In general, specular images include highlight pixels 
and non-highlight pixels. The highlight pixels correspond to 
light sources, such as lamps or WindoWs, With a high intensity 
incident light. Thus, the pixel values are usually saturated. 
[0053] The highlight pixels are used for the ?rst term C1( ). 
Because the object is highly specular, the highlight pixels can 
be extracted by applying thresholding to the short exposure 
image (or the HDR image) to produce a binary image. 
[0054] The binary images and a distance transform are used 
to construct distance images DI and DR corresponding to the 
input and reference highlight images, respectively. This dis 
tance transform helps to match the binary images accurately. 
Then, the cost function C1( ) is de?ned as 
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1 D,(u, v) - 2 (3) 

Nhighlight DR(I4 — x, v — y) a 
(M) 

Where (u, v) are pixel coordinates and Nhl-ghh-ght denotes the 
number of pixels Where the summation is carried out. The 
reference highlight pixels and their 1 -pixel neighbors are used 
as a stencil for the computation. 
[0055] It is understood that one can generate more than one 
pair of DI and DR images using a neW thresholds to produce 
binary images. The cost is modi?ed to consider all such pairs 
simultaneously. 
[0056] This highlight based cost function has folloWing 
advantages. First, the highlights are usually very sparse in the 
input image, so they can be used as a strong constraint for the 
object’s location. Second, the cost function is smoother than 
that of the conventional cost functions using full specular 
pixels. Third, the stencil of the highlight contains a very small 
number of pixels, so computing this cost can be done e?i 
ciently. The minimiZation can be performed using any appro 
priate optimiZation procedure. In one embodiment, doWnhill 
simplex minimiZation is used. The doWnhill simplex minimi 
Zation procedure converges Well to a global minimum very 
rapidly and stably. 

C103. R54... X. Y) = 

[0057] Full Specular Pixels Based Cost Function: 
[0058] The second term C2() considers full specular pixels 

C2(IL,R97¢7UL,X, Y):1—NCC(IL(u,v),R97¢7UL(u—x,v—y)), (4) 
Where NCC denotes normaliZed cross correlation (NCC). 
Here, the object’s segmentation mask can be used as the 
stencil for the NCC. HoWever, using only geometrically reli 
able specular pixels as the stencil produces better results in 
practice. 
[0059] It is understood that to deal With a large dynamic 
range, the pixel intensities maybe transformed to a neW space, 
eg a logarithmic response (or exponential response), before 
cost computation, so that specular pixels get less (or more) 
importance. 
[0060] As shoWn in FIG. 3, the geometric stencil selection 
is as folloWs. First, an incident light ray i is estimated for each 
pixel in the reference image, knoWing the re?ected light ray r 
and its surface normal £1. From the laW of the re?ection, the 
incident light ray is represented by 

[0061] Then, the reliability of the pixel information can be 
de?ned by considering the illumination direction. As shoWn 
in FIG. 4 for an example reference image 125, illuminations 
from il are reliable 401, and from i2 are unreliable. The illu 
mination direction is represented by elevation (cos'l i2), and 
aZimuth (tan_liy/ix) angles in the camera coordinate system. 
[0062] The illumination With the small elevation angle is 
usually more unreliable than that With the large elevation 
angle because of inter-re?ections betWeen the specular 
objects and environment map changes, such as using a differ 
ent background in the environment. Finally, for the stencil in 
Equation (4), only the reliable specular pixels are used, i.e., 
pixels With incident light rays at elevation angles larger than 
90°. 
[0063] Overall Procedures 
[0064] The overall method for pose estimation is as fol 
loWs. First, the reference specular images 125 are generated. 
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For each possible pose 122, the optimal translation param 
eters are obtained. As the initial points for the downhill sim 
plex procedure, arbitrary three corner points of the input 
image are used. The control parameter 7» is changed from 0 to 
1, Which means that translation is roughly optimiZed by using 
only highlight pixels, and then subsequently also improved 
by considering full specular pixels. After translation optimi 
Zation, there are many translation optimiZed poses and their 
associated cost values. The minimal cost value is for the 
optimal rotation parameters (0, (j), (AI). 
[0065] Optional Pose Re?nement 
[0066] After estimating 140 the initial rough pose 141, the 
pose parameters can be further re?ned 150 by continuously 
optimiZing the pose parameters. Translational pose is already 
continuously optimiZed by the doWnhill simplex procedure in 
the rough pose estimation, so only the rotational pose needs to 
be re?ned using the folloWing cost function 149: 

Where R is the reference image obtained With the long 
exposed environment map EL. This optimiZation uses a 
steepest descent procedure. 
[0067] Specular FloW Based Approach 
[0068] FIG. 2 shoWs the method Where the optical How is 
used as the feature for matching. In general, the optical How 
is the pattern of apparent motion in the environment caused 
by the relative motion betWeen camera and the environment. 
In this embodiment, the optical How is assumed to be induced 
either by environment motion or via camera motion. 

[0069] TWo input images are generated 210 under a pre 
de?ned small rotation of environment around a knoWn direc 
tion, eg the vieWing direction of the camera 103. Alterna 
tively, more than tWo images can be used. 

[0070] Then, the specular ?oW betWeen these tWo images is 
determined to obtain the input specular ?oW image I 231 
containing 2D displacement vectors for each pixel. A block 
matching procedure is used to determine the specular How. 
[0071] In general, the specular How can be induced by 
motion of the object 101, the environment 102, or the camera 
103. For simplicity of this description, only environment 
motion is described but it is assumed that specular How could 
have been induced by motion of object 101, the environment 
102, or the camera 103. Because the relative pose betWeen 
camera and object is ?xed, specular How is only observed in 
the specular pixels. Therefore, this motion cue, Which indi 
cates Whether the specular How is present or not, can be used 
for strongly constraining the location of the object. 
[0072] Pose Estimation 
[0073] Generating Reference Specular FloWs: 
[0074] For rough pose estimation 240, at each one of vari 
ous poses 122, tWo or more specular images are generated 
220 for locations (0, 0, Z0), as before, but this time using a 
color coded environment map, Which is slightly rotating, e. g., 
51degrees. The color coded environment is simulated rather 
than measured. The color coded environment enables the 
determination of exact pixel correspondences betWeen tWo 
images so that optical How is easily and completely calcu 
lated. The resultant optical ?oW image is used to generate the 
reference images R 225. 
[0075] Pose Optimization: 
[0076] The reference images 225 are compared With 
acquired 230 input specular ?oW image I 231, and the 3D pose 
241 is estimated 240 by minimiZing a cost function 239: 
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Where C1( ) and C2( ) are cost functions based on motion 
segmentation and specular ?oW, respectively. An optimiZa 
tion procedure is used to compute the translation and rotation 
estimates that minimiZe the cost function. In one embodi 
ment, the translation Q(,Y) is ?rst optimiZed for each rotation 
using the doWnhill simplex procedure. Then, the rotation is 
optimiZed by comparing all cost values. 
[0077] Motion Segmentation Based Cost Function: 
[0078] Motion segmentation is de?ned as a binary image 
indicating Whether there is a nonZero specular ?oW or not for 
each pixel. Let D, and DR denote the distance transformed 
images constructed from motion segmentation of input image 
I 231, and the reference specular ?oW image R 225. The cost 
function C1( ) is 

where the summation is carried out for motion segmentation 
pixels of the reference image R, and NmOn-On denotes the 
number of such pixels. It is understood that the pose estima 
tion and the object segmentation can be performed concur 
rently. 
[0079] Specular FloW Based Cost Function: 
[0080] The second cost term C2( ) in Equation (6) is con 
structed by comparing the input image I(u, v) 231 With a 
translated reference image R 225. The input image contains 
many outliers, due to noisy and textureless regions in practi 
cal applications. The outlier pixels are those pixels that are 
inconsistent With other (inlier) pixels in the image. Therefore, 
a simple matching cost such as sum of squared differences 
(SSD) does not Work Well. Instead, the cost function is based 
on the number of inlier pixels. 
[0081] First, the inlierpixels are pixels Where the difference 
betWeen the input specular ?oW vector I(u, v) and the refer 
ence specular ?oW vector R is less than a small threshold, e. g., 
1.0. The cost function C2( ) is 

Where M is the set of inlier pixels. 
[0082] Overall Procedures: 
[0083] The specular ?oW based approach uses the same 
overall method as the one based on specular intensity. Refer 
ence images 225 are generated using the model 121 and the 
possible poses 122. An optimal translation is estimated for 
each reference image using the doWnhill simplex procedure. 
Here, the control parameter varies from 0 to 1. Then, all 
translation optimiZed poses are compared to determine the 
optimal rotation. 
[0084] Optional Pose Re?nement 
[0085] After estimating 240 the rough pose 241, the rota 
tional pose parameters are optionally continuously re?ned 
250 by minimiZing a cost function 249: 

1 2 CH0, $5, 0') = N—k 
(M) 

2 (9) 
a 

[(14, v) — 
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[0086] Where R is the reference image, With pose param 
eter (6, q), o, X, Y) and Nmask denotes the number of 
pixels in the stencil, Which is de?ned as the object seg 
mentation mask. 

EFFECT OF THE INVENTION 

[0087] The invention exploits specular re?ection to glo 
bally estimate a 3D pose ofa 3D object, using a 3D model of 
the object. The method can Work With challenging objects, 
such as textureless and highly specular objects. The method 
uses simple matching cost functions and optimiZation proce 
dures, so that the method can be implemented on a graphic 
processor unit (GPU) to improve performance. 
[0088] Although the invention has been described by Way 
of examples of preferred embodiments, it is to be understood 
that various other adaptations and modi?cations can be made 
Within the spirit and scope of the invention. 
[0089] Therefore, it is the object of the appended claims to 
cover all such variations and modi?cations as come Within the 
true spirit and scope of the invention. 

We claim: 
1. A method for estimating a 3D pose ofa 3D object in an 

environment, Wherein the object has a specular surface, com 
prising a processor for performing steps of the method, com 
prising the steps of: 

rendering a set of pairs of 2D reference images using a 3D 
model of the object, and a set of poses of the object, 
Wherein each pair of reference images is associated With 
one of the poses; 

acquiring a pair of 2D input images of the object; and 
estimating a 3D pose of the object by comparing features in 

the pair of 2D input images and the features in each pair 
of 2D reference images using a cost function matching 
the features. 

2. The method of claim 1 Where the 2D input images are 
obtained from a single image acquired by a camera With a 
non-linear intensity response 

3. The method of claim 1, Wherein the 3D pose is de?ned by 
a 3D translation vector Qi, Y, Z), and 3D Euler angles ([1, q), o) 
for orientation. 

4. The method of claim 1, further comprising: 
re?ning the pose using a ?ne cost function. 
5. The method of claim 1, Wherein the features are obtained 

by image processing intensities due to specular re?ection. 
6. The method of claim 5, Wherein reference specular 

intensities are rendered by using a mirror bidirectional re?ec 
tance distribution function (BRDF), or some other knoWn 
BRDF. 

7. The method of claim 5, further comprising: 
arranging a mirror-like sphere in the environment; 
acquiring an environment map image via re?ection of the 

environment surrounding in the mirror-like sphere; 
constructing an environment map from the of environment 
map image, using a 2D plenoptic function, Which mod 
els appearance of the surrounding, and Wherein the ref 
erence images are rendered from a 3D model of the 
object re?ecting the environment map. 

8. The method of claim 7, further comprising: 
acquiring a set of images of the environment and generat 

ing a mosaic from the set of images in order to construct 
the environment map. 

9. The method of claim 1, Wherein exposures used While 
acquiring the input images are different. 
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10. The method of claim 9, Wherein a short exposure is 
about 1/60 second and a long exposure is about 1A second, and 
a camera aperture is adjusted for ambient illumination so that 
the long exposure produces an image With normal intensity. 

11. The method of claim 5, Wherein the pose is obtained by 
solving 

A A A - _ . . S 

(X. Y. 0. ¢. U) - argggg?pglcm. 13. RM. RM... X. n]. 

Where Q2, Y, 0, (j), (AI) denotes translation and Euler angles of 
the initial pose, and CR( ) is the a rough cost function, I L and 
RL are long exposure input image and reference images, and 
I S and RS are a short exposure input image and a reference 
images, respectively, and arg min is a function that returns the 
arguments that provide a minimum value, and an inner mini 
mum is determined before an outer minimum. 

12. The method of claim 11, Wherein the rough function is 

Where 7» is a control parameter, and C1( ) and C2( ) are cost 
functions for a long exposure image and a short exposure 
image, respectively. 

13. The method of claim 12, Wherein highlight pixels are 
used for Cl( ), and the highlight pixels are determined by 
thresholding to produce a corresponding binary image, and 
further comprising: 

constructing corresponding reference distance image DR 
and input distance image D I by application of a distance 
transform to the binary images. 

14. The method of claim 13, Wherein the cost function C1( 
)is 

Where (x, y) are projection points, (u, v) are pixel coordinates, 
Nhl-ghh-ght denotes a number of pixels for the summation, and 
S denotes a short exposure. 

15. The method of claim 12, Wherein the cost function C2( 
) is 

Where NCC denotes normaliZed cross correlation, and L 
denotes a long exposure. 

16. The method of claim 15, Wherein (X, Y) denotes trans 
lation and (u, q), 0) denote Euler angles of the ?ne pose, and 
Wherein the ?ne cost function is 

Where (u, v) are pixel coordinates of the input image I and the 
reference images R, NCC denotes normaliZed cross correla 
tion, and L denotes a long exposure. 

17. The method of claim 1, Wherein the features are specu 
lar ?oWs. 

18. The method of claim 17, Wherein the specular ?oW is 
due to a rotation of the environment around a predetermined 
vieWing direction of a camera acquiring the 2D input images. 
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19. The method of claim 17, wherein the specular ?oWs are 
determined using block matching and a color coded environ 
ment map. 

20. The method of claim 17, Wherein (X, Y) denotes trans 
lation and) (u, q), 0) denote Euler angles of the pose, and the 
rough cost function is 

CR(I,RQ,¢,U,X, DI(1-7~)C1(I,RB,¢,U,X, Y)+C2(I,RB,¢,U,X, 

Where 7» is a control parameter, and Cl( ) and C2( ) are cost 
functions based on motion segmentation and the specular 
?oWs, respectively, and R and I represent the reference 
images and the input images, respectively. 

21. The method of claim 20, further comprising: 
constructing corresponding reference distance image DR 

and input distance image D, from the binary images 
obtained by thresholding magnitudes of the specular 
How and a distance transform, and Wherein the cost 
function Cl( ) is 

Dim, v) — 2 l 

Nmotion DRW — X, V — y) a 
(M) 

Where (x, y) are projection points, (u, V) are pixel coordinates, 
the summation is carried out for motion segmentation pixels 
of the reference image R, and N denotes a number of 
such pixels. 

22. The method of claim 20, further comprising: 
comparing the reference specular ?oW image R and input 

specular ?oW image I, ?nding inlier pixels Where a dif 
ference betWeen the input specular ?oW vector and the 
reference specular ?oW vector is less than a small thresh 
old, and Wherein the cost function C2( ) is 

motion 

Where M is the set of inlier pixels. 
23. The method of claim 17, Where (X, Y) represents trans 

lation and (u, q), (I) represent Euler angles of the 3D pose and 
the ?ne cost function is 

1 
CH0, $5, 0') = N—k E 

(M) 

Where (u, V) are pixel coordinates, R is the reference image, 
With the pose parameter (6, q), o, X, Y), and Nmask denotes a 
number of a stencil, Which is de?ned as an object segmenta 
tion mask. 

24. The method of claim 18, Wherein the rotation is about 
51degrees. 

25. The method of claim 1, Wherein each pair of 2D input 
images is generated from a single high dynamic range image. 

1(14, v) - 2 
a a 
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26. The method of claim 1, Wherein each pair of 2D input 
images reference images is generated from a set of images 
collected With varying exposures. 

27. The method of claim 1, further comprising: 
picking the object out of a bin using a robot arm according 

to the estimated pose. 
28. The method of claim 27, Wherein the bin includes a 

single or multiple objects. 
29. The method of claim 1, Wherein the 3D pose has six 

degrees of freedom. 
30. The method of claim 1, further comprising: 
segmenting the object in the input images While estimating 

the pose. 
30. The method of claim 1, further comprising: 
estimating a re?ectance of the object in the input images 

While estimating the pose. 
31. The method of claim 1, Wherein the input images are 

acquired from multiple vieWs of the object. 
32. The method of claim 1, further comprising: 
actively illuminating the scene With an illumination source 
32. The method of claim 1, further comprising: 
actively illuminating the surrounding With an illumination 

source 

33. The method of claim 32, Where the illumination source 
included one or more projectors. 

32. The method of claim 1, Where the input images are 
acquired using polarization to estimate specular components. 

33. The method of claim 1, further comprising: 
illuminating the scene With different colors, and perform 

ing the method independently for each color. 
34. The method of claim 6, Wherein the re?ectance is 

mirror-like. 
35. The method of claim 6, Wherein the other knoWn BRDF 

is of the object. 
36. The method of claim 27, Wherein the input images are 

acquired by a camera mounted on the robot arm. 
37. The method of claim 27, Where the bin includes active 

lighting. 
38. An apparatus for estimating a 3D pose of a 3D object in 

an environment, Wherein the object has a specular surface, 
comprising: 

a rendering engine con?gured to render a set of pairs of 2D 
reference images using a 3D model of the object, and a 
set of poses of the object, Wherein each pair of reference 
images is associated With one of the poses; 

a camera con?gure to acquire a pair of 2D input images of 
the object; and 

means, implemented in a processor, for estimating a 3D 
pose of the object by comparing features in the pair of 
2D input images and the features in each pair of 2D 
reference images using a cost function matching the 
features. 


